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L. Introducticn,

The paper is devoted to the analysis of a spectral collocation method for approximating
stationary Navier-Stokes equations, governing the flow of a viscous incompressible fluid in
adomain Q of R? or R’

(.1) -vAu+gradp + (uViu=f inQ ,

divu=0 inQ ,
provided with Dirichlet boundary conditions
(I.L2) wu=g ondQ
In this system, the data are the density of body forces f, the velocity on the boundary g and
the kinematic viscosity v > O; the unknowns we want to approximate are the velocity u and
the pressure p inside the domain Q. The discrete solution is sought in a space of polynomials
of high degree on Q, and the equations (1.1)(1.2) are verified in a finite number of points,
called collocation nodes. We refer to [VGH] and to [CHQZ] for a detailed bibliography about
such methods. As far as the theoretical analysis is concerned, we limit ourselves to the test
domain Q = ]-1,1 [2. In this square, the collocation points form a cartesian grid : their
coordinates belong to the set of the nodes of a Gauss-Lobatto quadrature formula. However,
the numerical results prove that there is no difficulty to extend the method to
three-dimensional and/or curved domains.

The method we analyse in this paper has the following features :

1) Only one grid is invelved in the algorithm : indeed, all the equations of (I.1) will be
satisfied in the same nodes. We refer to [MMo] and [BM2] for other collocation methods for
the Navier -Stokes equations, which are called staggered grid methods.

2) Due to this unique grid, the velocity and the pressure are approximated by polynomials
of the same degree. Then, it turns out that there exist some spurious modes for the
pressure, i.e. some polynomials the gradient of which cancels at the collocation nodes; this
fact has first been pointed out in [Mo]. In order to obtain the convergence of the pressure, it
is necessary to choose a suitable discrete pressure space which does not contain these modes
but retains good approximation properties. We shall use the space already proposed in
(BMM][Mé] or [BCM].

3) The grid can be built from the Gauss-Lobatto quadrature formula associated with any
family of Jacobi polynomials. Here, we shall treat two special cases. The first one is the

case of Legendre polynomials; it is the simpler one, since its analysis involves the standard



-2 -

variational formulation of the Navier-Stokes equations in standard Sobolev spaces.
However, we also consider the case of Chebyshev polynomials; indeed, the nodes are then
images by the cosine function of equidistant points, so that the use of the Fast Fourier
Transform allows for a less expensive computation of the derivatives or of the nonlinear
terms. This last method is numerically cheaper, but its analysis involves a non trivial
formulation of the equations in appropriate weighted Sobolev spaces with the Chebyshev

weight, the properties of which are given in [BM1].

The method we present has already been studied in a simpler case : for the Stokes
problem that one obtains by neglecting the nonlinear terms in (1.1)
1.3) -vAus+gradp=f inQ |,

divu=0 inQ ,

when it is provided with homogeneous Dirichlet boundary conditions
(1.4) u=0 ondQ
We only recall the results of [BMM] in the Legendre case, of [BCM] in the Chebyshev case.
Then we extend them to the Stokes problem with non homogeneous boundary conditions, by
using the lifting of polynomial boundary data of [BM1]. Finally, the method is applied to the
full Navier-Stokes equations : the nonlinear terms are handled in a pseudospectral way. The
justification follows from the discrete implicit function theorem of [BRR], in a slightly
different form due to [C] (see also [CR]). The error estimates we obtain between the
discrete solution and the exact one, when it is assumed to be smooth enough, are the same as
for the Stokes problem. This theoretical justification is completed by numerical
experiments, achieved in the case of a three-dimensional domain with Chebyshev nodes, and
a description of the algorithm involved in the code is given. We refer to [M¢] for more

details on the numerical impiementation.

An outline of the paper is as follows. Section || is devoted to the definition of the
discrete approximation spaces and collocation problems, first in the homogeneous case, then
in the inhomogeneous one. In Section ||, we recall the convergence results of [BMM] and
[BCM] for the Stokes problem in the homogeneous case, then we complete them for
inhomogeneous boundary conditions. In Section 1Y, the analysis is extended to the
Navier~Stokes equations, in both cases of homogeneous and inhomogeneous boundary
conditions. Finally, in Section V, the techniques required by the numerical implementation

of the method are presented and examples of numerical results are given.



Notation
The norm of any Banach space E is denoted by ||.{l; . For any pair (E,F) of Banach
spaces, £(E,F) represents the space of continuous linear mappings from E into F. We mean
by A ® B the tensorial product of any sets A and B in a Banach space, while A®? is the
tensorial product of A by itself. In all that follows, ¢, ¢' ... are generic constants,

independent of the discretization parameter.

in Sections |1 to 1Y, we shall work in the square Q = ]-1 ,1[2. Let us precise some
notation about this domain. The generic point in Q will be denoted by x = (x,y) (or
sometimes by (x, , x,)). We introduce the cornersa; ,J € Z/4Z, of Q (wherea,, , follows
a, counterclockwise), and call ", the edge with verticesa,_, anda, ; foranyedge I ,J €
Z/4Z, n, is the unit outward normal to Q on I, and T the unit vector orthogonal to n, ,

directed counterclockwise.
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Sobolev spaces
For any domain A in R? and for any real number s > 0, we use the standard hilbertian
Sobolev spaces H*(A), the norm of which is denoted by II.HS'A . On the square Q, we shall use
the scalar product

(1.5)  (99) =[5 900 y(x) dx
We also recall that, for any ir‘eger m > 1, the semi~norm
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(1.6)  lglaqa( I o l8Merax ay™ (5 4 )'"2

is a norm on the space Hg‘(()) of the functions of H™(Q) which vanish on the boundary 0
together with all their derivatives up to order m-1 (the traces being defined in the sense of
[LMJ). The dual space of Hg'(Q) will be denoted by H™™(Q), and it is standard to note that
(1.7)  H Q) = { f + 8g/8x + dh/dy, (1,g.h) € LA(Q)® )

The space of functions in L2(Q) with a null integral is noted Lg(Q).

Next, we recall some basic material about weighted spaces of Chebyshev type (for
further details, see e.g. [CHQZ][BM1][M2]). If o(T) = (1-22)~""2 denotes the Chebyshev
weight on the interval A =]-1,1[, let

LAA) = {9 A >R[] 0%(0) oR) &L < +00 )
be the Lebesgue space associated with the measure () dT, provided with the norm
(1.8)  Hollg,n = ([, 022 0(2) dt)'*2
The weighted Sobolev spaces are defined as follows : for any integer m > O, H;"(/\) is the
subspace of Lf(/\) of the functions such that their distributional derivatives of order < m
belong to L;"(/\); it is aHilbert space for the inner product associated with the norm
(19)  Nolloon = Zao 1012007
where
(1.10) {gh,p = lldg/dt* llg, A
For areal numbers=m +ad,mé€ N, 0 <0 < 1,wedefine H:(/\) as the interpolation space
between H;“”(/\) and H:’(/\) of index 1-g (cf. [LM]); we denote its norm by II.IIS.M.
Finally, we can apply a rotation and a translation to define similar Sobolev spaces on any
segment of length 2 in R?. We use the same notation as before to indicate them, as well as
their norms.

The Chebyshev weight on the square Q is defined as w(x) = p(x) p(y). Let

Li(()):{w:() - R ;In 92(x) w(x) dx < + 00 }
be the Lebesgue space associated with the measure w(x) dx, provided with the inner product
(L1 o)y, = fq 000 w(x) wix) dx
and the norm |.lly , o = (.,.)1,/2. Next, weighted Sobolev spaces are defined as follows : for
any integer m > O, HB(Q) is the subspace of Lf,(O) of the functions such that their
distributional derivatives of order < m belong to Lf,(Q); it is a Hilbert space for the inner
product associated with the norm
(112) Nl on=(Zpao 0,00

where
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(1113)  lolyn= (I ll8te/axag |2, o'

For areal numbers=m + 0, m €N, 0 <0 < 1,wedefine H}(Q) as the interpolation space
between HS*'(Q) and H,(Q) of index 1-0; we denote its norm by 1l o - Finally, for any
integer m > 1, we consider the closed subspace of the functions of H(T(O) which vanish on
the boundary 3Q together with all their derivatives up to order m-1 (the traces being
defined in the sense of [LM]); this space, denoted by H[) ,(Q), is the closure of D(Q) for
the norm of H7(Q) (see [BM1, Prop. 11.9]). Due to the Poincaré inequality, an equivalent
norm on H ,(Q) is the semi-norm [.| |, . The dual space of HY (Q2) will be denoted by
H_™(Q); if the space Lf,(Q) is identified to its dual space, we have for instance

(1.14)  HZ'(Q) = {1+ dg/0x + 8h/0y, (f,g,h) € L2(Q)?)

We also introduce the space LZ‘O(Q) of functions g in L2(Q) such that |, q(x) w(x) dx is

equal to 0.

Yariational formulations

in order to treat the Legendre and Chebyshev approximations simultaneously, we
introduce a letter A which is L in the Legendre case and C in the Chebyshev case, a
parameter o equal to O in the Legendre case and to ~1/2 in the Chebyshev case (this is the
power of (1-t2) involved in the corresponding weight). For instance, the symbol Hy(Q)
stands for the space H*(Q) in the Legendre case (A = L, « = 0) and for the space H(Q) in
the Chebyshey case (A=C, x = ~1/2).

To write appropriate variational formulations of equations (I.1) and (1.3), we first
consider the boundary condition (1.2). Let us assume that the function g is such that the g, =
O, +J € Z/4Z, satisfy
(1.15) g, e H"%(rp? ,vezsaz
(1.16) 2, ez/az JrJ g,.n;do=0
Assume moreover, in the Legendre case,

A7) [2layta,-tT) - gy, (a, + T, )Rt dt< o0 ,JeZ/4Z

and, in the Chebyshev case,

(117). gya)) =g,,(a) ,JeZ/4Z

Then, there exists [G, Thm 1.5.2.3][BCM, Thm 111.2] a function u, in H;(O)z satisfying
(1.18) divu,=0 inQ

(1.19) wu=g, only, ,JeZ/4Z



Next, we define the bilinear form a, on H,l(())2 X H)\IO(Q)2 by

(1.20), VYue H(Q)?, Vve H(}(Q)z, g (uyv) =v(gradu ,gradv) ,
(1.20), YueHM? vveH! ()7

ac(u,v) = v |, (grad u)(x) (grad (ve))(x) dx .
Clearly, for any f in H;\'(Q)2 and any g satisfying (1.15), (1.16) and (1.17), , problem
(1.3)(1.2) is equivalent to the following variational one : Find a pair (u,p) in
HA()? x L2 (Q) , with u-uy in Hjo(Q)?, such that
(1.21), VYve H;,O(Q)z, ag(uyv) + (v, gradp), = (1v), ,

vqeli(Q), (divu,g,=0

In the Legendre case, it is well-known that problem (.21 )L admits a unique solution. In the
Chebyshey case, it is also known [BCM, Thm [11.2] (but may be not so well) that problem
(1.21)¢ admits a unique solution. In both cases, the solution satisfies the stability estimate
(1.22)  ull; o0 +llPllg pq < ”f”H;'(O)z + Lyezraz gy ”(1-0()/2,A,FJ )
Of course, if the solution (u,p) of (1.21), belongs to HZ(Q)? x LZ(Q), then the pair
(u,p-(1/1%) [, p(x) w(x) dx) is the solution of problem (1.21) .

As far as the Navier-Stokes equations (1.1)(1.2) are concerned, for any f in H;'(Q)?
and any g satisfying (1.15), (1.16) and (1.17), , they admit the following variational
formulation : Find a pair (u,p) in HA(Q)? x Lf\'o(o) , with u-uy in H;'u,(())2 , such
that
(1.23), Vve HA'O(Q)Z, ap(uv) + (v, gradp), + ((UV)u,v), =(fv), ,

Vgeli(Q), (divu,g),=0
In the Legendre case, this problem admits at least one solution. If this solution belongs to
Hé(())2 x ch(Q), it is also a solution of (1.23), , up to an additive constant on the pressure.

More details will be given in Section IV.



1l. The collocation problems.

We begin by introducing the collocation framework, especially the collocation grid.
Then, we present the collocation discretization of the Stokes and Navier -Stokes equations
provided with homogeneous boundary conditions. That leads us to define suitable discrete
spaces of pressures. Finally, we can extend the collocation problems to the case of

inhomogeneous boundary conditions.

{1, The collocation framework.

Let us introduce some monodimensional notation. For any nonnegative integer n,
P (A) denotes the space of restrictions to A = ]-1,1[ of polynomials of degree < n. We
shall use two families of orthogonal polynomialson A .
1) the Legendre polynomials (L, )n;o , which are orthogonal for the measure dt,
normalized by the following condition : the Legendre polynomial L, , n > 0, is of degree n
and satisfies L (1) = (+1)";
2) the Chebyshev polynomials ( T, = cos (n Arccos L) ), , o » Which are orthogonal for the
measure ¢(L) dT; of course, the Chebyshev polynomial T, , n > 0, is also of degree n and
satisfies T (£1) = (2 1)".
In order to have a unique notation in the Legendre and Chebyshev cases, we introduce, for
each real number « > -1, the Jacobi polynomials ( J: )n;o which are orthogonal for the
measure (1-L2)* dc. Since J; is of degree n and such that

X2 1) = (2 D" M (neox+ 1)/nE T+ 1)

where [ denotes the Euler's gamma-function, the Legendre polynomial L, coincides with
\J: , While the Chebyshev polynomial T is equal to 4" [(n!)2 / (2n)t] J;”z. Finally, we
recall that the \J: , h = 0, are the eigenfunctions of a Sturm-Liouville operator, more
precisely they satisfy
L1 (1=t ) & n(ns20c+ 1) (1-2)* %= 0
We refer to [DR, § 1.13] for the properties of these orthogonal polynomials,

Next, let N be a fixed integer > 3. We denote by tf , 0 < j <N, the zeros of the
pelynomial (1—t,2) J;', with -1 = cg < C? <. < Cﬁ = 1. There exist weights Q]f‘ )
0 < j < N, such that the Gauss-Lobatto quadrature formula

2y e -ty d = oo of



is exact for any polynomial in P2N_1(/\). We shall need the interpolation operator bﬁ
associated with these nodes : for any function ¢ in ('30(7\), b:cp betongs to P (A) and
satisfies

(U1.3) gD =o) ,0<j<N

Remark 1l.1 : It is well-known that the zeros cjc and the weights ojc satisfy
(1.4) | tf=cos((N-)T/N) ,0<j<N
of =/N ,1<j<N-1, and pg=oy=T/2N
Note that, although the Arccos of the ch , 0 < j < N, are not strictly equidistant, their
distribution is coarsely the same.

Example I1.1 : For N = 15, we give the values of - ch = t,ﬁ_j 1<jgT.

Legendre case Chebyshev case
j=1 0.9695680462702179 0.9781476007338056
j=2 0.8992005330934721 0.9135454576426009
j=3 0.7920082918618152 0.8090169943749474
j=4 0.6523887028824931 0.6691306063588582
j=5 0.4860594218871376 0.5000000000000000
j=6 0.2998304689007632 0.3090169943749474
j=7 0.1013262735219494 0.1045284632676535
Now, let us consider the two-dimensional domain Q = ]-1,1[°. For any nonnegative

integer n, we denote by P _(Q2) the space of restrictions to Q of polynomials of degree < n
with respect to each variable, i.e. the space Pn(/\) ® Pn(/\); we also introduce the space

P:(Q) of polynomials of P_(Q) which are equal to 0 on the boundary 9.

For the fixed integer N, we define the grid E,‘? by
(11.5) Z9={xr =@, t);0<jkN) .
The idea of defining the grid from the nodes of a Gauss type quadrature formula was first
presented in [Go].

To each point x).f in E,? , we associate the weight gjf = gj“ gf . That allows us to define
the following bilinear form on C%(0) x C%(DQ)
(1.6) (04 an = L0 Lo 0068 w0 o
Since the quadrature formula (11.2) is exact on P,,_,(A), it coincides with the scalar
product (.,.), on Py_,(Q); it is known [CQ1, §3] that, on P\(Q), it is still a scalar
product, and the norm : ¢ - (tp,lp)}\‘/ﬁ is equivalent on P\ (Q) to the norm : ¢ — flolly o o

with equivalence constants independent of N. Finally, we define the interpolation operator
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3;:‘ on the grid E.ﬁ in the following way : for any function ¢ in C°(Q), 3,?4) belongs to
P\ (Q) and satisfies

(11.7) e =90 ,xeZ}

1.2, The collocati blem for | bound it

We choose the space X, of discrete velocities equal to PN(Q)2 and the space M of
discrete pressures equal {o a subspace of PN(Q) which we will precise later.

Let us assume that the data f belong to Go(Q)z. The collocation approximation of the
homogeneous Stokes problem (1.3)(1.4) is the following: Find a pair (uy , py) in Xy x My
satisfying
(11.8), (- v Aug +gradp)(x) =1(x) ,x€ZFNQ

(divu)(x) =0 ,xeZf ,
together with the boundary conditions
(11.9), u0=0 ,xeZpNon

In order to state a variational formulation of problem (11.8), (11.9), , we define
three bilinear forms respectively on C%(0)% x @%(Q)%, on C%(0)% x @'(Q) and on
C'(@)2 x C°%D) by
(11.10)  Vue Q)2 vveCD)?, an(uv) = - v (Auv),y
A1) vve @32, vaqeC(@), byy(v.a) =(v,grada),, .

(11.112)  VveC'(@? VqeClD), by, y(v,a)=-(divv,a,y

Since the quadrature formula (11.2) is exact on polynomials of degree < 2N-1, we have
(1.13), VYue PN(Q)z, Vve P,](Q)z, g y(uv) = v (gradu, grad v) , ,

(1.13); YueP(M?* Vve Pa()?, ac y(u,v) = v (grad u, grad (vw) w")A‘N
Moreover, we note that, in the Legendre case, the two forms b, \ and b, coincide on
P2(0Q)? x P, (Q) while, in the Chebyshev case, one has

(11.14) Vv ePi(Q)?, ¥V aePy(Q), bycy(v,a) =~ (div(vw) 0™, a)¢y

Now, it is clear that problem (11.8), (11.9), is equivalent to the following variational
one: Finda pair (uy ,py) in P,}(Q)2 x My such that
UL1S), | Vv e Pa(@)?, au\(uy, vy + byayy o py) = (V) an

v qy € Py(0Q), b,‘,A‘N(uN Q) =0

Finally, to discretize the Navier-Stokes equations (1.1)(1.4), let us consider the
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nonlinear term. Since the solution u of (1.1) is divergence-free, the quantity (u.V)u is
equal to Z,?=1 3(u,u)/8x, , where u, and u, are the components of the velocity u. Though this
property is no longer true for the discrete probiem in the general case, it seems more
convenient to choose the second form, for reasons of numerical stability. Moreover, if a
continuous function u is known by its values at the nodes x of Eﬁ , it is easy to derive the
values of uu at the same nodes, hence to compute J§(uu). The pseudo-spectral
approximation, as suggested in [01], consists in differentiating this interpolant i.e., in
replacing a(uu)/0x, by Ogﬁ(uiu)/ax; .
These two arguments lead us to the following discretization of the Navier-Stokes
equations : Find a pair (uN , pN) in Xy x My satisfying
(H.16) 4 [-v Auy, +gradp, + Z?ﬂ Gﬁﬁ(uNiuN)/axi](x) =f(x) ,x¢ 3: na ,
(divu)(x) =0 ,xeZ) ,
together with the boundary conditions (11.9), .
Of course, this system is equivalent to the variational probiem : Find a pair (uy , py)
in Pg(Q)? x My such that
Vo€ Pi(0Q)?, apn(uy L vy) + Dya vy, py)
(L17), b i (B8O /0% AN = (V) an
V ay € Py(Q), bysp(uy,gy) =0

Our purpose is to choose appropriate discrete pressure spaces M , such that

problems (I1.8), (11.9), and (11.16), (11.9), are well-posed.

113, The discrete pressure spaces.

It is known [Mo][Mé][BMM][BCM] that the space P\(Q) contains “spurious” modes
for the pressure, i.e., polynomials the gradient of which vanishes at the coliocation nodes of
:—2;\ N Q; of course, even if they can be solved numerically (see Section Y), the collocation
problems cannot be well-posed if any of these modes belongs to My , hence we have to
characterize them. More precisely, for i = 1 or 2, we define the subspaces
(11.18)  Zypy = {ay € Py(Q); ¥ vy € PR(Q)%, by vy, ay) = 0}

Let us also introduce, in the Chebyshev case, the polynomial s, of PN( A) which satisfies
(1.19) Yoy €Py(A), Tio sy au(tD of = [ (0 o

Finally, we need the Lagrange polynomial rf associated with each node Cf ,0<j<N: rjA
belongs to P\((A), is equal to 1 in Cf‘ and to 0 in any other node cf ,O<k <N, k#j.
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We have [BMM, LemmaV.1][BCM, Prop. V.2 and V.3]
Lemma ll.1: The subspace Z,,y , 1@l or 2, isof dimension 8. Itis spanned
1) in the Legendre case, for i=1 or 2 ,by { Ly, Ly 22 and { r'(; , rh )82,
2) in the Chebyshev case, for i=1,by { Ty, Ty }®2 and { r§ ,rﬁ Y82 for =2, by

{sy Ty Y22 and {r{, rg )82

Let Mij'N denote the orthogonal subspace of Z,, \ in Py(Q) with respect to the scalar
product ("')A,N . In the sequel, we shall always choose the space of discrete pressures My
such that the orthogonal projection operator Ty : My —> M,AL,N with respect to the scalar
product (.,.), y satisfies

(H.20) Y Oy € MN ' MQN“()'A'Q <¢ ”anN !IO'A,Q

Remark 11,2 : Of course, the choice M, = M“l\'N is the most natural one. However, this
space has not good approximation properties since it can be checked that all its elements
vanish in the corners of the domain Q (which is a priori not the case for the exact
pressure). On the opposite, for any real number \, 0 <X < 1, it is possible to build
subspaces My which satisfy (I [.20) and such that the following inclusion holds

(1.21)  Ppw(Q) My ([XN] denotes the integral part of AN)

which implies that these M, have good approximation properties. Examples of such spaces
are given in [BMM, Prop. V.3] in the Legendre case and in [BCM, (1V.61) and (I1Y.49)] in

the Chebysheyv case.

Now, problem (11.8), (11.9), seems overspecified, since there are eight equations
more than unknowns. Due 1o the definition (i1.18) of ZZA,N , it turns out that problem
(11.18) , is equivalent to: Find a pair (uy ., py) In P;;(Q)2 x M, such that
(11.22), LA P,j(())z, agn(Uy ) + b AV Py = (v

V€ MZt,N + boan(uy,ay) =0
Clearly, the continuity equation in (11.8), is redundant. However, let us denote by S_ the set
of the four corners of the square Q, and introduce a set 3% of four collocation points in
E,f \ S, satisfying the following property :
(11.23)  det(qilx)) =0 , I<J,K<4 ,
where x, runs through 3 and q runs through { Ly, Ly }®2 in the Legendre case and through

{ Sy TN }“2 in the Chebyshev case. The following result is proven in [BMM, Prop. V.1 Jand

[BCM, Prop. V.7].
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Proposition 1.1 : Assume that hypothesis (11.23) holds. Problem (11.8), (11.9), is
equivalent to the following one : Find (uy , p) in Xy x My satisfying

(11.24), | (-vAuy +gradp)x) =tx) ,xe=ZgNa ,

(divu)(x) =0 ,xeZy \{s U3}

together with the boundary conditions (11.9), .

In the same way, we have
Proposition 11,2 : Assume that hypothesis (11.23) holds. Problem (11.16), (11.9), is
equivalent to the following one : Find (uy , py) in Xy x My satisfying
(11.25), [- v Auy+gradp, + Zi2=1 OQQ(UNiuN)/Oxi](x) =f(x) ,xc¢€ E.: na
(divud(x) =0 ,xe=Zg \{S U%)

together with the boundary conditions (11.9), .

In Section V, the reader will find practical ideas for solving this system, in particular

how to choose a convenient set of degrees of freedom for the pressure.

Ll.4. The collocation problem for inhomogeneous boundaru conditions.
in this paragraph we assume that f belongs to (‘30(())2 and that the boundary data g are

such that the g, = g, ,J € Z/4Z, satisfy (I.15) and (1.16) but also belong to C°(T,)? and
J =4y J

satisfy

(11.26) g,a) =g,,,(a) ,JeZ/4Z

We are now interested in the approximation of problem (1.3)(1.2). The first idea is to use
the same discrete problem (11.8), as in the homogeneous case and simply replace the
boundary equation (11.9), by

(11.27), uw)=g,(x) ,xeZ{NT,, JeZ/4z

But it turns out that this problem has no solution in the general case. Indeed, if the equation
div uy was satisfied in any point of Z—:: , we would derive div uy = 0 exactly. In particular
this would imply five conditions for uy at the boundary :

(11.28)  (divuy)(a) =0 ,J€Z/4Z

(1129)  Z,egaz Jry uy - nydo=0

These equations solely depend upon the values of uy at the boundary, hence upon the LﬁgJ ,
J € Z/4Z. In general they are not verified, even if (1,16) holds (examples of functions g,

satisfying our assumptions but violating (11.28) and (11.29) are given in [BCM, (V.6)] and
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in [Mé, Chap. 4]).

That is why we propose the following discrete problem : Find (uy , py) in X x My
satisfying (11.22), together with the boundary conditions (11.27), .

Note however that this last problem is not so far from a collocation one, as the
following proposition states it.
Proposition 1.3 : Any solution (uy , py) of problem (11.22), (11.27), in Xy x My
satisfies the collocation equation
(11.30), (-v Auy +grad p)(x) =f(x) ,x€ ZgNQ

Remark 11.3 : By noting that the space Mzi,N is exactly the image of P,](O)2 by the
divergence operator, it can be seen that solving the equation

Vae Mzi,N v boan(uy, @ =0
in (11.22), is actually equivalent to the minimization of ||div u, llax ; this condition is

implemented in practice; as will be seen in Section ¥ (cf. also [Mé]).

In the same way, we define the approximation of the inhomogeneous Navier-Stokes
equations (1.1)(1.2) as : Find (uy , py) in Xy x My such that
Vv € PR oy Uy v+ by (v )
(1.31), e Ll QIR U /0% AN = (V)an
¥ Oy € Mynp o baan(Uy Gy =0
together with the boundary conditions (11.27), . We also have the
Proposition 11.4 : Any solution (uy , py) of problem (11.31), (11.27), in Xy x My
satisfies the collocation equation

(132), [-v Auy + gradpy + o, (398 (ugu)/8x]00 = K(x) ,x€ ZANQ

In the following sections, it will be proven that the four discrete problems are

well-posed.
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UL, Convergence results for the Stokes problem.

The convergence of the method in the case of homogeneous boundary conditions has
already been thoroughly analysed [BMM][BCM], hence we only recall the results. Then, we

extend them to the nonhomogeneous case.

ULL. TJ (] ] I it
Problem (11.8), (11.9), is actually analysed through its variational formulation

(l|.22)A . We recall the main properties of the bilinear forms involved in this formulation,

which are the corner-stone of the study. For i = 1 or 2, let us define the kernels

U111 Ky = {vy €PR(Q)2 ;Y gy € P(Q), by (v, G = 0)

Clearly, K,y in the Legendre case and K, , \, in both cases coincide with the subspace of

divergence-free polynomials in P,‘;(Q)z, while KM\’N in the Chebyshev case is the subspace

of polynomials v in P,‘;(O)2 such that div (vyw) is equal to 0.

Proposition |i1.1 : There exist constants ¥ , 8, and 6, independent of N such that the
forms @,y . bypy and by, satisfy the following continuity properties

Vou, e PN(Q)z, vV ovy € P,](Q)z, lag nCuy , vl < ¥ lluglly o Ivigllyag o
(111.2) Vg € Pa()? Y gy € P(Q), 1byanvns a0l <8, Iyl ag Naxllonn -

V vy € Py Y gy € Pu(Q), by vy, 001 < 8, vl a g lawllo
In the Legendre case, there exists a constant o, > O independent of N such that
(11.3), YV wge P o ywy,wy) > o llwyli,
in the Chebyshev case, there exists a constant o > O independent of N such that
(N1.3)e VwyeKyny Avge K vyz0/acy(wy,vy) > o lwylly oo lividlly oo s
There exists a constant B,> O independent of N such that
(111.4) Y gueMpy, IvyePa()? vy=z0/

bian(Vi, Q) > 8 N2 flvy lyaollawllonn -

if hypothesis (11.20) holds, there exists a constant B, > O independent of N such that
(111.5) Vg €My, 3vy € Py()?, vy =0/

L2
Dyanty, @) = 8y N lvylly oo llayllo a g

Using a well-known theorem for saddle-point problems [B][GR, Chapter I, Corollary

4.1][T, Chap. |, Th. 2.1] in the Legendre case and its generalization to nonsymmetric
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problems [N][BCM, Corollary (l.2], we derive from this proposition the following
theorems [BMM, Thm V. 1][BCM,Thm V. 1].

Theorem 11t 1 : Assume that hypothesis (11.20) holds. For any function f in C%n)?,
the collocation approximation (11.8), (11.9), to the Stokes problem (1.3)(1.4) has a

unique solution (uy ,py) in P3(Q)% x M.

The error estimates have been proven respectively in [BMM, Thm V.1 and V.2] in the
Legendre case and in [BCM, Thm V.2 and V.3] in the Chebyshev case. Note that the main
arguments of the proofs will be recalled in the following subsection, in order to study the
inhomogeneous case.

Iheorem II1.2 : Assume that hypothesis (11.20) holds, that the solution (u,p) of the
Stokes problem (1.3)(1.4) 1is such that u belongs to H,f\(())2 for a real number s> 1,
and the data 1 belong to H(Q)? for a real number o > 1. Then the solution (uy ,py) of
problem (11.8), (11.9), satisfies

(111.6)  fu-uyll; ag < ON"Jlull o q + N 2%t 2 0)

for a constant ¢ independent of N.

Iheorem 1.3 : Assume that hypotheses (11.20) and (11.21) hold and that the solution
(u,p) of the Stokes problem (1.3)(1.4) belongs to HZ(Q)2 x HZ"(Q) for a real number
s> 1, and the data f belong to Hf;(())2 for a real number a > 1, Then the solution
(uy , py) of problem (11.8), (11.9), satisfies

(17 lp=pylloaq < ¢ ON** Cllull, p g + 1PNy a0 ) ¢ N2 I8l a0 )

for a constant ¢ independent of N.

Remark 1111 : Let us consider for a while the problem : Find (uy , p,) in P5(Q)% x M,

such that

(”|.8)A V VN € p":(Q)z, aA,N(uN ,VN) + b‘A,N(vN ) DN) = ("VN)A )
Vg € Py(Q), byapluy,g) =0
which is problem (11.15), with (f,vy), y replaced by (f,v), . Then, Theorems 111.1 to 111.3

are still valid. Furthermore, by reading the proof of [BMM][BCM], it is easy to see that the
estimates (111.6) and (111.7) can be replaced respectively by

(111.9)  Nu-uylly o <eN"llullaq

and

(111.10)  lip-Pylloan <CN° Clullyag + 10l 1 p0)
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This will be used in the following section.

UL2. Tt ¢ int I I it
Our purpose is now to study the discrete problem (11.22), (11.27), . Since we need an
element in the space of trial functions X that satisfies, in a discrete sense, the boundary

condition (1.2), we state the following lifting result that can be derived from [BM1,

Prop.V.1].

Lemma [Il.1: There exists an operator Qﬁ from the subspace of all pelynomials
Py = (Opy)yezraz 1N TUyezsaz Pa(Ty) satisfying

WL11) eys(ay) =0y (@) L JEZ/AT

into P\(Q) such that, for any such polynomial ¢ ,

(111.12)  Qf(@) =9, onl,, JeZ/4Z

Moreover the following estimate is satisfied

A113) Mgl ag < N T cz7az 0wy llo.ar,

Sketch of proof : From [BM1, Prop. V.1], we derive that there exists an operator Q,ﬁ‘
which satisfies (i11.12) and such that one has
A 1- . -2
oy (@l a0 <IN T, 274z ”‘PNJ”o,A,rJ + N2 craz lony(@pl)
Then, estimate (111.13) follows from the previous line and the inverse inequality [Q, (2.4)
and (3.2)], valid for any polynomial ¢, in P\(A),

”‘PN”L“(A) <C NI+ "le HO,A,/\

The previous result allows us to check that the discrete problem (11.22), (11.27), is
well-posed.
Theorem 111.4 : Assume that hypothesis (11.20) holds. For any function t in @%(Q)?,
the collocation approximation (11.22), (11.27), of the Stokes problem (1.3)(1.2) has a

unique solution (uy , py) in Xy x My .

Proof : If we choose uy , equal to the image of ( ia, )j e 27az PY the operator Qg . the
polynomial uy = u, - uy , belongs to P,](Q)2. Then the pair (uy , p,) is a solution of

(11.22), (11.27), if and only if the pair (uy , py) satisfies :
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Vv € Pa()?, a,p\(y , vy) + byan(Vy o Py
(I11.14), = (an = 3an(Uyp V)
l P
Vay € Moan s baan(y, ay) = = bypp(uyy,ay)

Due to Proposition I1].1, we derive the result from [BCM, Corollary 1.2].

Next, we will study the approximation of divergence-free functions by divergence~
free polynomials, thus generalizing the result of [SY] to the case of non homogeneous
boundary conditions. Let us set
(1.15)  K,(Q) = {weHX)? ;divw=0inQ)

Lemma 111.2 : There exists an operator Ry from K,(Q) into Py(Q)? NK,(Q) such
that the following estimate is satisfied for any real number s > 3 : for any function w in
KA(Q) NHQ)?,

(1. 186) “w'Rp?w”LA'Q <0N1—s'|w”s,A,Q

Proof : Let us recall [M1, Remark 11.3 and Lemma 1V.2] that there exists an operator n,’:g

from Hz(/\) into P\ (A) which satisfies for any function ¢ in Hi(/\)
17y | nhPe(=1 = g(=1) and mgte(+1) = @(+1)

(drg2e/dg)(-1) = (dp/dt)(-1) and  (dngPe/de)(+1) = (dp/de)(+1) .
Moreover, we have for any function ¢ in H(A), s > 2,

(111.18) ||¢-ﬂﬁ'2¢||2,A,A +N ”‘p‘nﬁ'z‘p“LA‘/\ + N2 "‘p‘nslz‘p"ol,\/\ <¢C N2-s "'p"s,A,/\
Next, for any function w in KA(Q), there exists a unique function ¢ in

HZ(Q) N Lf"o(Q) such that w is equal to curl y in Q; moreover, if w belongs to HZ(Q)Z,
s > 3, it satisfies

(1.19) ”q’”sH,A,Q QCMW”,AQ
Setting gy = (n,ﬁ‘g@ nﬁ’z)w, we define Rﬁw as being equal to curl y,, . It remains to estimate

A
Iw-Rywll, aq <cllv-wyllaq

<c( II‘I""PN “Hf\(’\"-i(/\)) + "‘U'WN "HA(/\'HA(/\)) + ”w-wN"Lz(/\.Hi(/\)) ).
From (111.18), we infer
A2 A2
~(rn,“omn,, 2 2
= (ot Dv 2 (A L20A))
< llw—(n,?'z@id)wlle(A'Lz(/\)) + |y 2o id-riy?)w In2ea L2can
" Y
<cN sll‘l’"HZ”(/\.Li(/\)) + [lido(id-ty )wllHi(,\,L:(A))

1-
<eN vl a1 20a0 * 1 W20a 3 A0
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ch"’ +1 2 2 -1
Clollyeeta i 2ean 1T H2a 1Ay

1-
<eNlwlly, a0

The quantities [y-y, ”H;(A ,HA(/\)) and JJy-wy, "Li(/\ 'Hf\(/\)) are estimated in the same way.

Finally, we obtain
Iw-Rywll, g <eN"llwlly, 100 -

which together with (I111.19) gives the result.

Of course, other divergence-free polynomials approximations of divergence-free
functions in H,l(())2 can be buill, However, note that, for any function w in K,(Q), the
operator R: satisfies
(111.20) (Ryw)(a)) =w(a,) ,J€Z/4Z
Moreover, it has the following useful property.

Corollary I1L.1: The operator Rﬁ satisfies the following estimate for any real number

T > 2 : for any function w in K,(Q) such that the trace wy ~belongs to H (T 2,
A Iry FALIN

A -1
(a1.21)  Nwpe =Ry wie o ar, SN Wi loar,

Proof : We write

Iwie,~Ra wir o ar, < Cl10w/0x-8uy/0xllo o, + 106/8Y=Buy/8Ullg o, )
In the case J = | or Il for instance, using (111.17) and noting that the operators 3/08x and
id@ﬂ,’?'2 commute, we have

(a(nl2enl?)y/ax) (2 1,9) = (3ideny?)y/ax)(x1,y) = (idoy?)(dy/ax)(£1,y)
and, similarly,

(a(ni2eng?)p/ay)(x1,y) = (B(idengy/ou)(£1,y)
so that, by (111.18),

Iy ~Rg Wie, o, < (@Y /0x)-(ide 020w /0) llg ar,

+ly-CGdomgHwlly ar,)
<oNT (llow/oxll ar, + Il g ar, ) <C Nl llar,

The cases J = |l and IV are studied in the same way by exchanging the variables x and y.

We are going to introduce a slightly different approximation to the Stokes problem
(1.3)(1.2), that satisfies conditions (1.16) and (11.26). In all that follows, we assume that,
if (u,p) is the solution of (1.3)(1.2), the function u belongs to Hf‘(Q)Z; then, we set
(111.22) z,_, =Ry _,u
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Let us remark that the data 2y iy J € Z/4Z, define a boundary condition that satisfies

(1.16) and (11.26). Hence we can define two auxiliary problems
a) Find (,8) in Ha(Q)? x L3 4(Q) such that
(111.23), | Y VveH (), a,(iv) +(v,gradp)ya(tv),

Vaqeli(Q), (divii,g,=0 ,

and satisfying the boundary conditions
(111.24)y U=z g, onl, ,Je€Z/4Z ;
b) Find (U , By) in Py(Q)? x My such that

(11.28), | VvyePR@)?, oy iy, v + byanvy  By) = (vdan

Vg€ Maans Doan(@yq)=0

and satisfying the boundary conditions

(111.26), G0 =2y, (0 x€ZyNT,, JeZ/4Z

The error bound between the solutions u and uy of problem (1.3)(1.2) and (11.22), (11.27) ,

will be obtained by studying the differences between uand u, tiand Uy, , Uy and uy, .

Lemma 111.3 : Assume that the solution (u,p) of the Stokes problem (1.3)(1.2) is such
that u belongs to HZ(())2 for areal number s > 3. The following estimate is satisfied
(111.27)  Nu=bll, g g <N llully 5 q

for a constant ¢ > O jndependent of N.

Proof : Since the pair u—u is the solution of a Stokes problem with null body forces and
boundary data equal to ur - zy_yr, »J € Z/4Z, it follows from the stability estimate
(1.22) that

lu-Ully p o0 <€ 2y ez/a2 e =2 e No-wivzary
Due to the trace theorem [LM, Chap.1, Th. 8.3][BM 1, Thm 11.2], that implies

lu-tilly 0 < cllu-zy_ il o g

Then, we deduce the lemma from Lemma [11.2.

Similarly we can obtain an error bound between uy and Uy, .
Lemma Il1.4 : Assume that the boundary data 9,, J € Z/4Z, belong to HQ‘(FJ)Q for a
real number T > 2. The following estimate is satisfied
(111.28)  fluy=tyll o0 < © NT/E 2 sezraz 19,llcar,

for a constant ¢ > O independent of N.
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Proof : It follows from problems (11.22), (11.27), and (111.25), (111.26), that the
polynomial uN-ﬁN is the collocation approximation of a Stokes problem with null body
forces and boundary data equal to LﬁgJ = Zy_qry J € Z/4Z. Let Wy denote the image of
( LﬁgJ - Zy_4r, )y ¢ z/4z DY the operator Q,ﬁ\ . Settingwy = uy ~ GN -wypandry = py - ﬁN ,
we see that the pair (w , ry) is the only solution in P3(Q)% x M, of
(11.29), | Vv e PR, a,y(Wy,vy) +bya (Vg 1y = = 2 (W V)
1
Voay € Moan s boan(Wy Gy = = Doy n(Wyy s Gy)
Using [BCM, Corollary 11.2] together with Proposition I11.1, we obtain
2

IIWN ||1.A,0 <cN "wN’b”]‘A'Q )

so that, using Lemma lll.1,
~ 2,1- A

lug-uylly oo < CN°N “Liewar lay~iyg, IlO,A,rJ + “”irJ‘ZN-IIrJ "(),A,rJ )
The lemma follows from Corollary 1l1.1 and from the following estimate for the
interpolation error [CQ1 Thms 3.1 and 3.2], valid for any real number s > 1/2:

(111.30)  flo-igolloan <cN2**llol,an

Finally, in order to get now an error bound between u and GN , we note that problem
(111.25) 5 (111.26), is a discrete approximation of problem (111.23), (111.24), . That
allows us to derive the following estimate.

Lemma 11,5 : Assume that the solution (u,p) of the Stokes problem (1.3)(1.2) belongs
to H;(())2 x HZ"(Q) for a real number s > 3, that the data f belong to H,’,:(())2 for a
real number o > 1 and that the boundary data g, , J € Z/4Z, belong to HX(T ))? for a
real number T > 2. The following estimate is satisfied

(H1.31) =Byl g0 < ON"Jlullypq + N2 el g + N5 e 2702 Noylar, )

for a constant ¢ > O independent of N.

Proof : Let us set u* = U - z,_, and uy = Uy - z,_, . Thus, (u*,p) is the solution in

Hao(Q)? x L3 o(Q) of

(11.32), | Vve H/l,o(mz- ay(u*v) + (v, gradp), = (1), - a,(zy_, ,v) ,
Vgell(Q), (divu*,g,=0 |,

and (uy; , By) is the solution in P3(Q)? x M, of
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UI33), | Vovy € Pal)?, g,y (u vy + byay vy, By) = (L) = 8y n(zy_y o ¥y),
Vay¢€ Mzi,n v boan(ug . ay) =0
Next, we use an abstract error estimate due to [BCM, Corollary I11.3] : since the forms
a,(.,) and a, (. ,.) coincide on P (@)% x P2(Q)? and since z,_, belongs to P,,_, ()2, for
any polynomial v, _, in P,}_1(Q)2 and any polynomial wy, in P,‘;(Q)2 such that
¥ Gy € Many » Daan(Wy ) =0
the following estimate holds (note that u* ~ u} = u -~ Uy )

“a - aN I|1.A,Q <¢C { IIU"'VN_1 “LA.Q + ”U'—WN "LA,O

(111.34) R (1,205 - (1, 2045
z, € P,](())2 I zy ”1,A,Q

The more convenient here is to choose vy_; = wy, = 0. So it remains to estimate fju* "|,A,n and
the last term.
1) We have

lu*lly pg < Nu-tlly o +lu-2zy_ (Ml aq
so that, by Lemmas 1}1.2 and 111.3,
U11.38) Nutlly g <cON"lull,pq + N Z 270z 1850ear,)
2) We recall [CQ1, 8§3] that the scalar product (.,.), induces a norm on P (Q) which is
equivalent to||.[ly , o . Hence, choosing f_, in'P\_,(Q)?, we obtain for any 2, in Pa(Q)?

(200 - (F, 2000 =(t=1yy,2y)8 - (33' = fuo1 0 Z2an

<ot =ty loan + 18- I8 tlonn ) lzyllo ag

Let us recall that the orthogonal projection TIﬁ from L2(Q) onto Py(Q) satisfies the
following estimate for any ¢ in H;(Q),s > 0,
(11.36)  flo-Tlxolloag <N lel,aq
Taking for instance f_, = ﬂ@_,f and noting that 3,? is equal to Lﬁ ® {,,? , we derive from
(111.30) and (111.36)
(11.37) (1,205 = (1, 20,y SN2ty o lZyllg 4 0

Finally, estimate (111,31) follows from (111.34), (111.35) and (111.37).

From Lemmas |11.3 to II1.5, we derive the main error estimate.
Theorem 1115 : Assume that hypothesis (11.20) holds and that the solution (u,p) of the
Stokes problem (1.3)(1.2) is such that u belongs to H3(Q)? for a real number s> 3,

that the data 1 belong to H(Q)? for a real number o > 1 and that the boundary data g, ,
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J€Z/4AZ , belong to H;,‘(I'J)2 for a real number T > 2. Then, the solution (uy , py) of
problem (11.22), (11.27), satisfies

(111.38)  flu-uylly ag < CN""Jlull 4 o + N"2%

"1ty aq
7/2-1
+N jearan Iy "Y,A,rJ )

for a constant ¢ > O independent of N.

We conclude with an estimate for the pressure.

[heorem !1.6 : Assume that hypotheses (11.20) and (11.21) hold and that the solution
(u,p) of the Stokes problem (1.3)(1.2) belongs to Hf\(())2 x HZ"(Q)for a real number
s > 3, that the data 1 belong to HZ(Q)zfor areal number ¢ > 1 and that the boundary data
g,, JEZ/AZ, belong to H,'\(l'\,)2 for areal number T > 2. Then, the solution (uy , p)
of problem (11.22), (11.27), satisfies
(111.39)  llp-pyllgan <c IN*Cllully g +1Pls_; a0

2 Il a0 + NET Lyezsan gy ":,A,rJ }

for a constant ¢ > O independent of N.

Proof : Using the Inf-Sup condition of Lemma I11.1, we derive from (1.21), and (11.22),

that, for any qy in My,
I]D-pN ”O,A,ﬁ ¢ N2 { ”U—UN ”LA'Q + ”p—QN "()’A’Q

Cosp (zy , grad qy), - bya (24, Q) S'-ZN)A - (£,29) 5

z, € Py(Q) Izl 40 2yl 40

Owing to (11.21), taking for instance qy = TT[A)\N]p and using (111.36),(111.38) and
(111.37), we obtain easily (111.39).

1)

Remark 111.3 : As in the case of homogeneous boundary conditions, if we consider the
problem : Find (uy , py) in X x My such that
(111.40), | ¥ vy € Pa()?, a4y, V) + byay(vy, py) = (Bv),

Vay € Mzi,w boan(uy Q) =0
and satisfying the boundary conditions (11.27), , Theorems li1.4 to I11.6 are still valid,
and it is easy to see that the estimates (111.38) and (111.39) can be replaced respectively by
(11.41) Ju-ugll aq <6 (N ullpg + N2 Z ) 20z l850car, )
and
(11.42)  fIp-pylloan <IN lull,ag + ol ya0) + N2 Z e zsaz Nayllear, }-



The aim of this section is to obtain, for the discrete problems (11.16), (11.9), and
(11.31), (11.27) , , convergence results similar to those which were proven in the linear
case. We begin by describing the main tools of the analysis, together with some properties
of the exact equations. Then we establish some technical lemmas. This allows us to prove the
convergence and to give error estimates for the velocity in both the homogeneous and

inhomogeneous cases. Finally, error bounds are also derived for the pressure.

1¥.1. The main tools,

To study the discrete problems, we shall use a fixed point theorem due to M. CROUZEIX
[C, Th. 2.2], which is a refined form of the discrete implicit function theorem of [BRR].
For the reader's convenience, let us recall this theorem : we consider a @'—mapping Fy
from a Banach space Zy, into itself and we assume that uy is a point in Zy such that DF(uy
is an isomorphism of Z, . We denote by €y , Yy and Ay(m), 1 > 0, the quantities
(Iv.1) ey = IFyCup) Iy, ¥y = ORI g 220

An(D) = sup { IDF(wy) ~DF\(u) llg 7, 2 + Wi € Zy and [lwy-ugllz, <0} .

Theorem 1Y.1: Let us assume that 2y, A(2%y&y) < 1, then for each § > 2y, Such
that yy Ay(m) < 1, there exists a unique solution uy of the equation Fy(uy) = O in the ball
Sy = {wy€Zy,;llwy~uy llZN < M }. This solution satisfies

(1V.2)  VwgeSy, lug-wyly, < Day/C =% AyoD ] IRy (w)

Let us precise in what framework we shall apply this theorem to the Navier -Stokes
equations. We begin with the continuous problem. Let B , denote the subspace of all functions
g in Hfa""")/"’(af))2 satisfying (1.16) and (11.26). With the Stokes problem, we associate the
operators T, and ‘T'A respectively from H;'(Q)z into H;'O(Q)z and from H;\'(())2 x B, into
H,l(())2 : for any fin H;'(Q)z, T,f is equal to the function u, where (u,p) is the solution of
(1.3)(1.4) in H o(2)2 x L2 4(0); for any (1,g) in Hy'(2)? x B, , T,(1,9) is equal to the
function u, where (u,p) is the solution of (1.3)(1.2) in H,l(())2 x Li,o(m' of course, for
any 1in H;'(Q)?, T,(1,0) coincides with T,f.

Next, we consider the nonlinear term. We fix a function f in H,}'(())2 and a function g
inB, , and we define the following mappings
(1V.3)  G(w) = Z,f:, d(ww)/dx, -t and G(w) = (G(w),-g)
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Clearly, the Navier-Stokes equations (l.1)(l.4) have the following equivalent formulation :
Find & function u in H, o(Q)? such that

(IV.4), u+T,Gu)=0

The Navier-Stokes equations (1.1)(1.2) have the following equivalent formulation : Find a
function u in HA(Q)? such that

(IV.5), u+T,&u) =0

To check that these problems are well-posed, we need the
Lemma V.1 : For any tin H;‘(Q)z, the mapping G is of class C* from HY(Q)? into
H:'(Q)% and from H!(Q)? into K;'(Q)2 Furthermore, for any w in H(Q)?, the

operator DG(w)is compact from H;(Q)2 into H;'(Q)z.

Proof : Since the space H(L(Q) is contained in H'(Q), due to (1.7) and (1.14), it suffices to
prove that the mapping G is of class C* from H'(Q)? into H;'(Q)2 . For anyuandw in
H'(Q)?, we have

VveH (), 127, [, uw/ax) vedx=| Z7, [, (uw) (3(vw)/ox,) dx|.
Since the mapping : ¢ - ( [, Igrad (9w)I* w™' dx )% is anorm on H,o() equivalent to
the usual one [BM 1, Lemma {11.2], we derive
(IV.6)  VveH (@2 1ZE, [, @uw/ox) vodcl<c T2 lluwllgq o vl q-
We recall [LM, Thm 4.1][BM1, Lemma I11.1] the imbedding of H'/?(2) into LZ(0Q).
Moreover, using the Calderdn extension theorem [A, Thm 4.32] together with {G, Thm
1.4.4.2], we know that the mapping : (¢,y) - ¢y is bilinear continuous from
H'(Q) x H'(Q) into H'5(Q) for any € > 0. Hence we have for 0 <€ 1/2
V.7 luywill g0 < cllyywillypn <o lluwill o q < e llully g iwgll g
From (1V.6) and (1Y.7), we obtain

VveH (2 T2 [, (aum)/ax) vo dx| < clull, o Wl o VI,
Then, it is an easy matter to derive from (1V.3) that G is of class € from H'(Q)? into
H;'(Q)z. The compactness of DG(w) from H'(Q)? into H;'(O)z, follows from the previous

lines and from the compactness of the imbedding H'™*(Q) < H'/%(Q), 0 < e < 1/2.

Corollary [Y.1: For any f in H;’(Q)Z , problem (1.1)(1.4) has at least a solution
(u,p)in H)\'o(())2 x LE‘O(Q). For any (f,g)in H,;'(O)2 x B, , problem (1.1)(1.2) has at

least a solution (u,p)in HA(Q)? x Lf“o(o).
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Proof : In the Legendre case, the corollary states a well-known result [GR, Chapter IV,
Thms 2.1 and 2.3]. Next, in the Chebyshev case, since the space H;'(Q) is contained in
H-'(Q) and the space B is contained in B, , there exists at least a pair (u,p) in
H'(Q)? x L2(Q) solution of problem (1.1)(1.4) (resp. (1.1)(1.2)). From Lemma IV. 1, G(u)
is an element of H;'(Q)z. Let (u',p') be the solution in H(L(Q)2 x Lz‘o(()) of the Stokes
problem with data ~ G(u). Then, both (u,p) and (u',p') are solutions in H(;(())2 x L2(Q) of
the Stokes problem with data = G(u); the uniqueness of the solution of the Stokes problem
implies that u and u' coincide, and that p-p' is constant, equal to (1/m) In p(x) w(x) dx.We

see that (u,p’) belongs in fact to Hl,(())2 x Lio(Q) and is a solution of (1.1)(1.4) (resp.
(1.1)(1.2)).

We state a last property of the continuous problem. [t is interesting here to note that,
since the second argument in G is constant, the operators 1 + T,DG(u) and 1 + T,DG(u)
coincide on HAIO(Q)z.

Lemma 1Y.2 : For any real number q> 2, there exists a constant ¢(q,v) such that, ifa
solution (u,p) of problem (1.1)(1.4) (resp. (1.1)(1.2) ) satisfies

(1v.8)  ullgq sc@v)

the operator 1 + T,DG(u)is an isomorphism of H;\'o((})2 (resp. the operator

1+ T,0G(u) is an isomorphism of HA(Q)z).'

Proof : By the compactness result of Lemma IV.1, the operator 1 + TADG(u) is an
isomorphism of HIZ\‘O({))2 and the operator 1 + TAD"G(u) is an isomorphism of H:\(Q)2 if
and only if they are injective, i.e. the only solution (w,r) in H}\'O(O)2 x Li'o(o) of the
following linearized Stokes problem
Vve H;‘°(0)2, ay(w,v) + (v, gradr), + (DG(u).w ,v), =0
VaeliQ), (divw,g,=0 |,
is (0,0). In the Legendre case, the form a _is clearly elliptic on H(‘)(Q)z; in the Chebyshey
case, it is proven [BCM, Prop. I11.2] that, for any divergence-free function w in H(LO(Q)Z,
there exists v in H(L.O(Q)z, satisfying div (vw) = 0, such that
aclwv) >clwlly o lvily ,q
These properties, together with (1Y.6) in the Chebyshev case, give
Vviwllag<c Zi2=1 v w;llo m 0
Next, in the Legendre case, using the imbedding of H'(Q) intoany L%(Q), s < +o0, we have

at once
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"Ui Wj”o'o < c(q) ”Uilqu(m "Wj "1‘() ;
in the Chebyshev case, a similar argument leads {o
1/2 1/2 .
llu; willg o, 0 = llug wy @l o < oC@) llull gy 1wy “lly o < (@) luglligy W51l o0
In both cases, we obtain
Villwlly oo <@ flull gy lwllyag

and the lemma is proven for an appropriate constant ¢c(q,v).

In the sequel, we shall always assume that the data f belong to a space H:’\(O)2 for a
real number g > 1 and that the boundary datag, ,J € Z/4Z, belong to a space H,{(I'J)2 for
a real number T > 2 and satisfy (1.16) and (11.26). We consider a solution u of the
Navier -Stokes equations (I.1)(1.4) (resp. (1.1)(1.2)) which is nonsingular in the following
sense : the operator 1 + T,DG(u) is an isomorphism of HA’O(Q)"’ (resp. the operator
1+ TADé(u) is an isomorphism of H,'\(Q)z); by virtue of Lemma IY.2, such solutions exist
for f and g small enough ! Even in the standard Sobolev spaces, regularity results of the
solution (u,p) as a consequence of the regularity of f are not easy to derive [G, §7.3],
whence we shall assume in the sequel that there exists a real number s > 1 (s> 3 in the

case of hon-homogeneous boundary conditions) such that the velocity u belongs to H;(Q)z.

We turn now to the discrete problems (11.16), (11.9), and (11.31), (11.27), . As for
the exact Navier-Stokes equations, we must define the operators Tanand ‘T’A,N respectively
from H;'(0)? into P1(Q)? and from H;'(Q)? x B, into P (Q)? : for any f in K;'(Q)?,
T, 1 is equal to the function uy , where (uy , py) is the solution of problem (i11.8), in
Pa(0)2 x My ; for any (1,9) in H;'(Q)2 x B, , T, y(1,9) is equal to the function u, ,
where (uy , py) is the solution of problem (I11.40), (11.27),in P, (Q)% x M, . As in the
continuous case, for fin Hy'(02)?, T, yfand T, (1,0) coincide.

Next, we consider the nonlinear term. Due to (I1.17), , we need the following
operator Sy , defined from C°(Q) into Py(Q) by : for any function f in C%(Q3), SAT satisfies
(1V.9) Vg ePQ), (Syf.9)y=(f0)uy
Then, we set for any function w in G°(03)?

(IV.10)  Gupu(w) a L2, SMO(IR(wWmw)/0x, - 1) and Gy (W) = (G (W) , - g)
This definition is equivalent to
(VA1) Vg€ Xy, (GupW¥da = (T, 0(IWwD) /0%, v ay - (L) ay
Finally, problem (11.16), (11.9), has the following equivalent formulation : Find &

polynomial u, in P3(Q)? such that
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(1IV.12) 4 uy + Ty yGapn(uy) =0

Problem (11.31), (11.27), has the following equivalent formulation : Find a polynomial uy
in Py(Q)? such that

(IV.13), uy + T,y Ga (U = 0

Our purpose is now to study these two discrete problems by applying Theorem IV.1
respectively to the mappings Fy = 1 + T, \G,  defined from Z, = P,](O)z into itself and
By =1+ T, Gy defined from Z, = P (0)? into itself.

We know from [M2, Chap. 2, Thm {11.2][BM, Thm 1¥.S] that there exist a projection
operator U from HA(Q) onto P,(Q) such that the following estimate is valid for any real
humber s > 1,

(IV.14) V¢ e HXQ), Nlo-Ttiollaq + Nllo=-TR0llgpq <N lol,ag
and a projection operator T_[r?,o from HA‘O(Q) onto Py (Q) such that the following estimate
is valid for any real number s > 1,
(IV.15) | ¥ g €Hao(Q) NHYQ),

lo-TtR o0ll g * NIO=TUS g0l aq SN lloll, g
Let us denote by N' the integral part of (N-1)/2. We choose uy equal to TTQ.,OU in the case of
homogeneous boundary conditions and to T‘[,?.u in the case of inhomogeneous ones (this
definition of uy seems very complicated, but the fact that uyuy belongs to PN_,(())2 will
make the estimates more straightforward, as it will appear later). Due to (1¥.14) and
(1¥.15), we note that
(V.16 JJu-ugll aq * Nllu=uilly 4o <N llull, 40
The computation of the corresponding constants €, and €, , ¥, and ¥y , Ay(1) and A(7)

will be achieved in the next paragraph.

1¥.2, Technical results,
We begin by stating some results about the linear operators T, \ and TA'N .
Proposition IV 1 : For any tin H;'(Q)?, the operator Ty, Salisfies
(f,v
sup ) ___N)_Q__
vy € PR(Q) vnlly a0

’

(VA7) ITupflli a0 <c

and
(1V.18)  limy, o MTo-Ta Il aq=0

Moreover, if the solution T,t belongs to HZ(Q)2 for a real number s > 1, it satisfies the

estimate
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(IV19) NTp=-To )l g SN ITotlag
If the boundery dote g, , J € Z/4Z , belong to H;(FJ) for a real number T > 2 and if

the solution ’T’A(f,g) belongs to H;,‘(Q)2 for areal number s > 3 , it satisfies the estimate

(1V.20)  [I(T,-To ) (1.@)lly 5 g <0 ( N 1T (Dl a0 + N3 ezsaz 18 lear,)

Proof : By Proposition I1l.1, we obtain at once

A (Ty 1,V (tv,)
ITantliag<c  sup AN_AN ' N <o sup , — A
vy € Kyan lvilly a0 vy € PR(Q) vyl a0

which is (1V.17). Next, due to the definition of the operators T, and T,  , the estimates.
(1¥.19) and (1Y.20) have already been stated in (111.9) and (111.41) respectively. Finally,
(1V.18) holds by classical arguments using (I¥.19) and the density of £(Q) into H;'O(Q).

In order to estimate the nonlinear term, we need the following lemma.
Lemma IV, 3: For any real number € > 0, there exists a constant ¢ such that, for any
gyand yy in P(Q), the following estimate is satisfied

(v.21)  10d-I9) Cogull g + 10d-TU_ DCopin) o ag < SN oyl a g lunlly ag

Proof : Recalling that N' stands for the integral part of (N-1)/2, we write
(1d-39) Copuy) = (Id-Sﬁ)[(wN-TT,‘:.(pN-)(upN—TT:. wy) + T‘[ﬁ.qJN(\pN—— by
+ (=TT ‘PN)TTN 7% I
so that
1C1d-3) Copwdllg o o < 1C0x=TUR 0 =TT W llg 4 g
IR oy =Tl i llo o + 1 C0n=TTR 00 T W lg a0
+ 1R 1Coy-TR o) y=TC R W) g a0 + IR TTUR: 0 =TT w0 Tllo p
+ ”33[(%'1__[3' ‘pN)T_[:'WN]”O,A,n
This implies
101d-30) Copwndlo a0 < © Cloy=TO @y lLoogey loy-TT4: WN)HOAQ
+"ﬂN O ooy ll¥n- T[,? Wy loan + loy-TOy. ‘pN”om"ﬂN W llLooqyy )
< ¢ Clloylleoq) + "ﬂN Onlloorq)) ”"’N N l1‘N”0An
+ loy-TU\. (F'N”oAn”ﬂN Wy llLooay
Using the imbedding of H;“/Z(Q) into L=(Q) for any € > 0 and (I1V.14), we obtain for any
s>

(1v.22) "('d'gﬁ)(‘pn‘l’u)”o,m <eN[Clloglly,erznn * "TT:"pN"tn/z,A,n ) llwylly a0
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logloan TG vl er2a0]
Consequently, we derive the estimate of II(Id—Jﬁ) (ggwy)llo o q @s an easy consequence of the
inverse inequality {CQ1, Lemmas 2.1 and 2.4], valid for any integer m and any real number
r,osmxr,
(1V.23) ¥ ¢y € Py(Q), llowlag <N ™ gyl aq

The term II(Id—ﬁﬁ_,)(wNwN)IIO'AlQ is estimated exactly in the same way.

We can now state the following result.
Proposition 1¥.2 : For N large enough , the operator DFy(ug) =1+ T, DG, \(ug) is
an isomorphism of P,‘](Q)z, and ¥, Is bounded by a constant yindependent of N. For N
large enough , the operator DFy(uy) = 1 + T, DG, (u3) is an isomorphism of P\(Q)?,

and Yy is bounded by a constant Y independent of N.

Proof : We write DF(uy) and DFy(ug) in the form
(1v.24)  DFy(ug)=[1 + T, DG(u)] - (T,-T, \)DG(u) - T, \ (DG(u)-DG(uy))
| - Ton (DG-DG, ) (u)
and (since the second arguments in G and G, , are constant)
(1¥.25)  DFy(ug)=[1+ T, DG(u)] - (T5-T, \)DG(U) - T, (DG(u)-DG(uy))
- Tan(DG-DGy ) (ug)

Since the operator 1 + T,DG(u) is an isomorphism of H,llo(())2 and the operator
1+ T,DG(u) is an isomorphism of H;(Q)2, there exists a constant ¢, independent of N such
that, for any wy in Pa(Q)%,
(1v.26) |[1+T,0G(W ] wyll;aq>Colwyllian
and, for any wy, in PN(Q)Z,
(Iv.27) {1+ T,DG(W ] wyll; 4 g > o Wyl 4 g
It remains to bound the three other terms in (1¥.24) and (1V.25). Let wy be any polynomial
in Xy .
1) It follows from (1V.18) and from the compactness of the operator DG(u) (see Lemma
IV.1) that

limy . o (T4~ A.N)DG(U)IISE,(HA(Q)Z,HA(Q)Z) =0
Hence, for N large enough, one has

(1V.28)  [I[(T,-To \)DG(u). Wy ll; 5 4 < (c5/4) [lwy ly aq
2) It follows from (1Y.17) and from the continuity of the operator DG (see Lemma IV.1)
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that

1T\ (DGW-DGUN g (42 wic®y < CIDEW-DEUD o h)c)? ;' ()

<c lu-uglh ag

From (IY.16) together with a density argument, we infer the convergence of uj tou,
whence, for N large enough,
(1¥.29) [T, \(DG(u)-DG(uy)) wylly 5 o < (Co/4) llwylly o
3) We recall that ﬂﬁ denotes the orthogonal projection operator from Lf\(o) onto P(Q)
and we note that, for any ¢, in Py _,(Q), S,‘}cpN is equal to ¢ (see (1Y.9)). Thus, by (1v.3)
and (1V.10), we know that, for any v in P,](Q)z.

((DG-DGy \)(uy) Wy , vy)

= 2?:1 ((a/axi)(ld—ﬂ,ﬁ_,)(wmug + Uy Wy Vi a
ST (073X )(IE-TUE_ )Wyt + Wy, Viday

whence, by (I1V.17),

I 7o N (DG=DG, ) (u) Wy lly 5 g

<o 22, (3-8 (wud) o aq + [AA=TTE_ ) (W) llo a0
+101d-I) Cuiwy) llo a0 + I0d-T08_ ) (Ui w) o )

From this estimate together with Lemma 1V.3, we derive

I Ty (DG-DG, () Wy lly g <€ Nl Dl ag luillag
whence '
(1V.30) || T,y (DG=DG, )(ui) Wylly aq <N Hully oo Wyl a0
Finally, we conclude from (1Y.24) to (1V.30) that, for N large enough,

Vowy € Pa(a)?,  JOFCud)wylly a0 > o/ D Wyl g
and

v wy, € P()?, (DR (up)wy lly ag = (674 Iwylly g

which proves the proposition.

Lemma [Y.4 : The constants A(n) and A(m)satisfy
(Iv.31) Aym<cn and Ay(n)<cm

Proof : Let wy be any element in X, . We have
(T a n (DG A N (Wy=UR Dl xy xp)
< 175 (DG(Wy -t ) g 0 + 1 Tan (DG-DGp ) (Wy =) llep (xys x40

Using (1Y.17) and the continuity of the operator DG (see Lemma IY. 1) yields that
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175 (DG(Wy =t llgp i xyp < © DG(WN-U':)”z(XN,H;‘(Q)Z) < ¢ lwyg-uilly ag

On the other hand, we know that, for any 2 in PN(Q)Z,
1T 5 (DG-DGy ) (wyy-u). 2y lly 2 o
<¢ Z?:l [1C1d-3) [Owy=uyPzylllg p g + IC1d=TTN_ ) [Cwyi=upDzy o a g
+ 1 (1d=-39) [z Wy =) g o o + 1 =TT _) [zg(wy=uid Mo a1
so that, by Lemma 1Y.3, '
ITpp (DG=DG 5 ) (Wy=) gy < € N liwy=uilly 4

These two inequalities, together with the definition (1V.1) of Ay(7) and A (1), imply
(1v.31).

Lemma IY.5 : The constants €, and €, satisfy
(1IV.32) gy <c(u) N+ c() N2 and &, < clu) '+ o(1) N'*2%7 4 o(g) NT/ZT

Proof : Using (1V.4), , we write F\(uy) in the form

Fylup) =uy + To Gy (u)) - u - T, G(u)

= (Uf-u) + (To \=TR)G(W) + Ty (G(UP)-G(U)) + Ty (G \(uy)-G(uy))
which gives
(1V.33) ey <llu-ugllypq + IT5-To WG Iy 5 o + 1T N(G(W)-GU) Il 5
1Ty (GQUR) =G\ (ui)) ly 4

It remains to estimate these four terms.
1) Using (1V.16) yields
(1V.34) Jlu-uglly oo <eN"®llull, 40
2) It follows from (1V.19) that

I(TA=TaAGW g q SN ITGW 00
whence, thanks to (1v.4), ,
(1V.35) [(Ty=To)GW) |y g <N llull, o q
3) Due to (1V.17) and to the continuity of G (see Lemma IY.1), we have

o N (G(W-Glug) Il pq < cllu-uglling
so that
(1V.36) [Ty n(GW-GUN [y oo < SN llull, o o
4) From (1Y.17), we derive
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((G(ug) -G, \(ug) v
ITAN(G(UR) -Gy (Ui [l g <© sup W= Ganui) Vi)
’ o vy € P,‘](Q) ”vN”1,A,Q

Using the definitions (1Y.3) and (1Y.10) of G and G,y » We have for any v in P,‘;(Q)z, in the
Legendre case,
(G(ug) -G \(ug) ,vy)
= T2 [ugrug, avy /0%y = (Uyiug 0vy /8x)] = () + (Tv)y
and, in the Chebysheyv case,
(G(uy)-Ge y(uy) vy,
= Zizﬂ [Cuyruy, (3Cwvy)/0x,) w")w‘N - (uyruy (8Cwvy)/ax,) 0™ ]
v+ vy
But, since uyfuy belongs to PN_,(Q)"’, the exact and discrete scalar products coincide.
Hence, we obtain from (111.37)
| (G(uR) -G (U v a | =1 a - vyl < e NT+2eoe Il a0 lvalling
so that
(IV.37) ITp y(G(ui)=Gp y (i) [l a g < NV 2080 0 g
Finally, we derive the desired estimate for €y from inequalities (1¥.33) to (1Y.37).
The estimate for EN can be obtained in a very similar way, by writing
F(ug) = (uy-u) + (T, y-TAG(W) + T, (G(up)-G(W) + Ty (G y(uh)-G(u))
and using (1¥.20) instead of (1V.21).

1¥.3, Existence result and error estimates for the velocity.

We can now prove the main results of this section.
[heorem |Y.2 : Assume that hypothesis (11.20) holds and that there exists a solution
(u,p) of the Navier-Stokes equations (1.1)(1.4) such that the operator 1 + T,DG(u) is an
isomorphism of H;,O(O)2 ; assume moreover that u belongs to H*(Q)? for a real number
s > 1 and that the data t belong to HZ‘(Q)2 for a real number o > 1. For N large enough,
problem (11.16), (1.9), admits a solution (uy , py) in P(Q)% x M, . Moreover, it
satisfies
(1V.38)  flu-uyll; o o < c(u) N'=* 4+ (1) N'*2%°

for constants c(u) and c(f) independent of N.

Iheorem 1Y.3 : Assume that hypothesis (11.20) holds and that there exists a solution
(u,p) of the Navier-Stokes equations (1.1)(1.2) such that the operator 1 + T,DG(u) is an

isomorphism of H 1(0)2 ;- assume moreover that u belongs to H3( 0)2 for a real number
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s> 3, that the data t belong to Hff,(())2 for a real number g > 1 and that the boundary
data g, , J € Z/4Z , belong to H;(I'\,)2 for a real number T > 7/2. For N large enough,
problem (11.31), (11.27), admits a solution (uy , py) in Py(0)% x M, . Moreover, it
satisfies

(1V.39)  flu-uylly oo < 6W) N'= + (1) N'*2%77 4 o(g) NT/2

for constants c(u) , c(f) and c(g)independent of N.

Proof : Using Proposition IV.2 and Lemmas IY.4 and IV.5, we notice that 2y, A\ (2y,€y)
and 2%, Ay(2%4€,) are bounded respectively by ¢ €, and ¢ €, ; consequently, the
assumptions of Theorem IY.1 are satisfied for N large enough. Hence, there exists a constant
¢ > 0 independent of N such that, for each 1 < ¢, there is a unique solution uy of (1¥.12), in
the ball Sy & { wy € Pa(Q)? ; [lwy-up, lly oo <0} (resp. a unique solution uy of (IV.13),
in the ball 3, = { wy, ¢ PN(Q)2 lwy-uglly o o <1 1) Next, from (1V.2), we derive the
estimate

luy=uglly a0 < PO o g Cresp. lug-uilly 5 o <clF (Ul 40)
which, together with Lemma IY¥.5, yields (1¥.38) and (1¥.39).

Next, by Proposition i11.1, there exists a unique p, in My, such that

Vv € PR()?, bya (v py) = - (L w) - (G (uy) vy,
and the pair (uy , p,) is a solution of the corresponding problem (I1.16), (11.9), or
(11.31), (11.27),,.. |

Remark 1Y.1 : The error bounds we obtain are exactly the same as for the Stokes
problem ; in particular, the result is still optimal with respect to the regularity of the

solution (and also of the data f when Chebyshev approximation is used).

1¥.4, Error estimates for the pressure,
In order {o state an error bound for the pressure, we need a lemma.
Lemma 1Y.6 : The approximate velocity uy, as defined in Theorem |Y.2, satisfies
(G(U)-G, (u),v,)
(1Y.40) sup R AN TN N7A
vy € PR(Q) vy lly a0
The approximate velocity uy, as defined in Theorem ¥.3, satisfies
(G(U)-G, \(uy),vy)
(lv.41) sup ) AN N> NZA
vy € PR(Q) lvwlls a0

< C(u) N]-S + C(f) N1+2m-0

s C(u) Nl-s + C(') N’#Zo{—d + C(g) N7/2-1’ .

Proof : Let vy be any element in P;(Q)z. We consider only the case of homogeneous
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boundary conditions, since the proof in the general case is strictly the same. We compute
(G(U)-Giy () Vi) a = (G(U)=GlUy) V) + (Glu) =G 4 (1) Vi) 5
Lemma IY.1 and (1Y.38) give at once
| (G()-G(uy) v | < Colu) N'™* + () N2 ) v o
From the definitions (1V.3) and (1Y.10) of Gand G, y , we obtain
[(G(up) -G \(uy) vy, |
<c( Zi2=1 “(|d‘3r?)(UNiuN)||o,A,o + "(Id-ﬂﬁ-1)(uNiuN)“0,A,o ) vl an
() = Evdayl
Using Lemma V.3, we know that, for e > 0, '
"('d‘gﬁ)(“Ni“N)"o,An * ”(ld-ﬁ;}-l)(uNiuN)uo,A,O
= -9 Cugiy =ty 0Dl + IC10-TU_ D=y uid g 4
= 1C1d-03) [uygCuyg -0 + wiCupi-uy D1l a0
+ 10d-TTE ) [uyiuy=ug) + uyi G-ty o 4 o
<e N ( Huglly s + luglly a0 ) Huy-ugllag
< o(w) N ' (flu-u, laa + lu-uillyan)
Then, Theorem 1Y.2, (1¥.16) and (111.37) yield for € > O
| G(u) -G () W) | < ColW) N2+ N2 it o o) vy lly a

Finally, these two bounds imply (1Y.40).

Iheorem [Y.4: Assume that hypotheses (11.20) and (11.21) hold and that there exists
a solution (u,p) of the Navier-Stokes equations (1.1)(1.4) such that the operator
1 + TDG(u) is an isomorphism of HA'\'O(O)2 ; assume moreover that it belongs to
H3(Q)% x HY '(Q)for a real number s> 1 and that the data 1 belong to H3(Q)?for a real
number 0 > 1. Then, the solution (uy ,py) of problem (i1.16), (11.9), satisfies
(1V.42) lIp-py llg a0 < o(u,p) N>* + o(1) N>+2%7

for constants c(u,p) and c(f) independent of N.

Theorem 1Y.S : Assume that hypotheses (11.20) and (11.21) hold and that there exists
a solution (u,p) of the Navier-Stokes equations (1.1)(1.2) such that the operator
1+ TDG(u) is an isomorphism of HA(Q)? ; assume moreover that it belongs to
HZ(Q)2 x HZ"(Q)for a real number s > 3, that the data f belong to HX(Q)zfor a real
number o > 1 and that the boundary data g, J € Z/4Z, belong to H;(I'J)zfor a real
number T > 7/2. Then, the solution (uy , py) of problem (11.31), (11.27), satisfies

(IV.43) [Ip-py llo a0 < oCu,p) N7+ o(f) N3*250 4 o(g) NTT727
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for constants c(u,p) , c(f) and c(g) indspendent of N.

Proof : Let us introduce the solution (GN,f)N) in Xy x M, of the following problem :
(IV.44), [ vy e Pi()?, a,y(By o viy) + byay(Vy 2 By) + (G(W) ), =0
Vay€Maans boanlly g0 =0

together with the boundary conditions (11.9), (resp. (11.27),). Since uy is equal to

- T,nG(u) (resp. - T, G(u)), we deduce from (IV.19) (resp. (1V.20)) that

(IV.45)  flu-uyll; 5 o < c(w) N'"* (resp. llu-uyll; o o < c(u) N'"* +c(g) N2

moreover, we obtain from (111.10) and (111.42)

(1v.46)  llp-pyllo o0 < c(u,p) N3-%  (resp. Ip-Pyllo an < cu,p) N2 4 o(g) N'172)

Next, due to (1V.44), and (11.17), or (11.31), , we notice that, for any v, in P3(Q)?,
bian(Vy » Py=Py) = Bpn(Uy o vy) + (G(U) ), = 3a Uy, vy) = (Gpp(u) vy,

so that, from Proposition I11.1, we deduce
ap n(Uy-Uy V) + (G(U) -Gy (U)o

(V.47 llpy-Pyllgaq < N sup
NTNTOA. vy € Pa(Q)? tvwlly a0

Let vy be any element in P,‘](O)z. By the uniform continuity of A We have
apnCuy=ty , vy) <cllug=uyllaqlivgllyag
<o (=il pg + lu-tylly ap) Ivyll g
so that one can bound this term from (1Y.38) or (I¥Y.39) and (1Y.45). Using this estimate
and Lemma |Y.6 in (1Y.47) uields
(1V.48)  [Ipy=pyllo.aq < cu) N>* + c(1) N>+2%-°
(resp. lpy=Pyllo.aq < ou) N>7% 4 o(1) N*20 4 o(g) N'V/2T)

which, together with (1¥.46), gives (1Y.42) and (1¥.43).

That ends the theoretical results which can be proven for both the Legendre and
Chebyshev approximations of the Navier-Stokes equations. It remains to apply this method

to real problems, as will be done in the next section,
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V. Resoluti lgoritt I ical It

In this section, we describe the resolution algorithm we use for numerical
applications. It has been proposed first by Y. MORCHOISNE [Mo] and is aimed at solving the
time-dependent Navier-Stokes equations
(v.1) ( du/0t~-vAus+gradp + (uVlu=t inQx(0,T) ,T>0 |,

I divu=0 inQx(0,T) ,
with initial condition u(0) = u® in Q. But it can also be used to compute stationary cases as
it will be shown in the following. As far as time-dependent problems are concerned, time
discretization is achieved with the help of a finite difference scheme. While the convection
term is handled explicitly by an Adams-Bashforth approximation, the diffusive term is
implicitly treated in order to ensure stability.

Let us introduce a fixed time step 8t > 0. At each time (n+1) 6t, n > O, we compute an
approximation uﬂ" in X, of the velocity u((n+1) 8t). Furthermore, in order to make the
numerical computation easier, we first compute a scalar quantity qﬂ" in PN(Q), that we
call the pseudo-pressure, such that grad q,'}"

(grad p)((n+1) 8t). When the convergence is reached, the discrete pressure py is then

is an approximation of the pressure gradient

obtained by a post-treatment which is performed by solving a Poisson problem.
Numerical applications (see § Y.4) ‘have been made with a Chebyshey spectral
discretization. Thanks to this choice, we can employ the Fast Fourier Transform (FFT) in

the computation of the derivatives (see [CLW][CT][02]).

We consider the Navier-Stokes equations (Y.1)(1.2) with null right-hand side f. For a
given function g satisfying the assumptions (1.15), (1.16) and (11.26), we introduce the
subspace X\, (g) of all polynomials in X satisfying the boundary conditions (11.27), .

Let (u] , gy) be any initial quantities in X,(g) x P(Q). We assume that (uf , af) is

known in X,(g) x Py(Q), and we seek (ug*', ai*") in Xy(g) x Py (Q) such that

un»f1_un
L X 5 AN Aug* + grad qﬂ"‘ + (U Vug*l(x) =0 ,xe¢ Eﬁ na,
(¥.2) 1 1
(divug™ ,divug' ),y = inf (div wy , div wy),

w, € X\(g)
in the equations (¥.2), we use the following notation : for any integer n > 1,



-37-

ug* = (3/2) uf - (1/2) ug™’
Moreover, the operator L is a finite difference approximation of Id - nA, where 5 is a
positive parameter. More precisely, wesetL = L,L, , where
(v.3) Lyj=1ld-m9, ,i=1or2,
and 0, is the second-order finite difference operator : for example, if i is equal to 1, for any
function w in C%(%2), we define for any node x;¢ = (¢}, &) in 2y N A

O‘W(xjf) = (‘A_ztr_ x

je1755 -1
Wl T -wEh ) ow e - we) L)
Gty RO

( ]

The parameter 1) verifies
D=BVEt+yVEtT |

where B and ¥ are two nonnegative constants, and Y is an estimate of the velocity norm. Note
that, if L is chosen equal to the identity (i.e., 7 = 0), we have an explicit Adams-Bashforth
scheme. |n fact, however, we choose B and ¥ large enough to ensure a good stability of the
scheme. Indeed, this scheme, when applied to the one-dimensional Biirgers' equation, has
been analysed in the periodic case; it has been proven [Mé, Chap. 1] that for 7 large enough,
it is unconditionally stable and has a precision upper-bounded by c(a) (v 8t + 512 + N°%)

for all real numbers g > 0.

Y.2, Yelocity and pseudo-pressure computation.
Problem (V.2) is solved in two steps. First, we compute a predictor uﬂf,; of the
velocity in X4 (@). Then a corrector (v , gy) in P(Q)? x P\(Q) is computed, so that the

n+ 1

pair (ug*' , ay*") defined by

(v.4) uz"':ug"'p'+vN :
neld _ 0
O =G+

verifies the equations (V.2).

(i) Yelocity predictor computation,
We first solve the following problem : Find a polynomial uﬂ,‘,; in X:(g) such that
un+1_un
(v.s) [L 2B N _yAu*+ grad gy + (ug Vug*l(x) =0 ,x¢€ E‘.ﬁ na .

5t
This problem can be handled with standard linear system algorithms. indeed we can

associate with each operator L, , i = 1 or 2, the operator [; defined from C%(Q) into P,(Q)
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by : for any function w in C°(Q), L,w belongs to P\(Q) and satisfies
(V.6) [Lwx) =Lwx) ,xeZfnNa ,
[woawx) ,xeZhnoq
From [V, Thm VI.3], we deduce that the operators L, , i = 1 and 2, are (easily) invertible in
Py(Q) forany m > 0. Weset L =L,L,.
Let s be in Xy, the solution w in X, of the problem {w = s is obtained by solving
successively the two following problems : find w, in X, such that [1w‘ =sandfindw, in X

such that [,w, =w, ;thuswe havew = w, .

(i1) Yelocity corrector and pseudo-pressure computation.
Thanks to (V.4), the pair (u}*' , qi*') is the solution of (V.2) if and only if the pair
(vy . Gy) of Pa(Q)% x Py (Q) satisfies
(L -;—?—- +gradg)(x) =0 ,xeZfNQ ,
(v.7)
(divul's +divvy, , divul®s +divv), = inf,  (divwy,divwg),,
’ ‘ ' wy € X, (g) ’

In order to solve the problem (V.7), we introduce an operator & from PN(Q) into
PN(O) which connects the pseudo-pressure q to div v. We first define the operator grad in
the following way : for any ry, in Py(Q), grad r belongs to PN(Q)2 and satisfies
(v.8) (grad r)(x) = (grad r)(x) ,x€ZPNQ ,

(gradr)(x) =0 ,xeZ;NoQ
Then, we set, for any ry in P(Q),
(v.9) &ry = - stdiv (L™ gradry)

Thus, we can consider the two following problems : Find gy in PN(Q) such that

(V.10)  (Aay +divuy’y, Loy + divug'p),y
= inf (Arg+divuyy, Gy e divulth,
ry € Py(Q) ' S
and, secondly : Find v in P,](f))2 such that
Vi —A
(v.11) (L - +gradq)(x) =0 ,x€Z NQ
In the computations, we handle the resolution of (V.7) by solving the system (V.10)(V.11),

Hence, we are going to prove that the equations (Y.10) and (Y.11) are equivalent to (Y.7).

First, we need some results in order to prove that the minimization problem (¥.10)



-39-

is equivalent to the minimization problem in (Y.7).
Lemma Y.t : If the parameter v is small enough, the kernel of the operator & is equal

to Z,,y andits range is equal to Mzt,u .

Proof : Clearly, Z,,  is contained in the kernel of S and the range of & is contained in
the range of the divergence operator, hence in Mzt,u . Consequently, it suffices to prove that
the kernel of & is contained in Z,,n »Since that this would imply that it is equal to it and of
dimension 8, and that the image of & and MZAL'N have the same codimension 8 in Px(Q).

Thus, Tet g be any polynomial in the kernel of &. That implies that ! grad qy is
divergence-free in (1; since it belongs to P,](Q)z, there exists a unique polynomial g in
Py.1(Q) M HZ 4(Q) such that
(v.12) L[ grad gy =curlyy, inQ
Writing the expansion of y, in the form

(0 = (1= TN 50 W00
we obtain (3w, (1-x%)*)/8x)(x) = Z,:=1 .(9) n(n+200e1) IR(x) (1-x3)%, s0 that the
degree of y, with respect to y is < N. Using a similar argument for the variable x, we
deduce that y,, belongs in fact to PN(Q). Next, we compute

( grad gy, , curl () (1 -x2)*(1-y?)%) (l—xz)'“(l—uz)'“)A'N

= (grad g , curl-(y, (1=x)*(1-yD)™) (1-x)) " (1-y%) "),
= |, grad qy . curl (yy (1 Xx)%(1-y)" dx = 0

That implies by (V.12)

(Lleurt yy) , eurl Gy ( 1-xD)*1=yP)®) (1-xD)"*(1-y?) ™) =0
or equivalently

(LCeurt yy) , eurl (g ( 1-x3)*(1-y®)™) (1-x3)"*(1-y?) ™),y = 0
1) In the case 7 = 0, we have proven that

(Ceurl yy) , curl (yy ( 1-xD*(1=g®)®) (1-x7)"(1-y?)™) , = 0
From the ellipticity of this form on Py(Q), we deduce at once that y,, is equal to O, hence
that grad qy is equal to 0, and gy belongs to Z,, -
2) In the case ) > 0, denoting by ¢(N) the norm of the operators 8, and 9, on the space
Pn(Q) provided with the norm ||.ll; 4 4 and writingL - id= - 108, -1 0, + 72 0,0, , we
obtain

0> clugl?ag-002cN) + 9eMN?] fuyllfag
whence the result for 1 small enough.
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From the two results of this lemma, we derive respectively the two following
propositions.
Proposition Y. 1 : /f the parameter v is small enough, the system (V. 10)(Y.11) Js

equivalent to problem (Y.7).

Proposition ¥.2: /7 the paremeter v is small enough, the set of velues {(grad qy)(x),
X € 3,? N Q} , where qy is a solution of problem (¥.10) , is uniquely defined and the

solution vy of problem (Y.11) is uniquely defined.

In both Legendre and Chebyshev cases, the minimization problem (Y.10) can be solved
thanks to the Axelsson’'s minimization algorithm, which was aimed to problems associated
with symmetrical nonnegative operators or with operators the symmetrical part of which
is positive definite [Ax][J}[ME&]). In our case, even if the operator does not satisfy these
assumptions, the algorithm turns out to be efficient when appropriate re~initializations

are used [Mé, Chap. 2, § VII.3 and Chap. 4, § 1V.1].

Remark V.1 : Note that it is rather standard to set up problems concerning pseudo-
pressure, as in (¥.10), by eliminating the velocity of the continuity equation. The basic idea
of this procedure relies upon the Uzawa's algorithm [G1], since the pseudo-pressure plays

the role of the Lagrange multiplier.

Y. 3. Pressure post-treatment,
Once we have reached the stationary state, i.e., the time (n+1) 8t when the velocity

becomes independent of the integer n, we can compute the pressure.

We set
un+l_un
y.13) s™'l=-p N N
( ) T
and we seek the pressure py in PN(Q) as the solution of
(V.14) Apy(x) = - (divs™H( ,xezZgnNa
(3py/8M(x) = = (™' .m)(x) ,xe ZFNaQ

Here, the vector n denotes the unit outward normal vector to Q on 0Q.

n n n
- v AU+ (U Viu®

Problem (Y.14) is solved through a finite difference preconditioning method which

involves the operator L defined in (V.3). Thus, py is computed as the 1imit of the following
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1
sequence ( Py, )y 5o - We set py, = gy

; then, assuming that Pr is known, we compute
Pr . @ the solution in P\ (Q) of
(V.15) (LPysy =PV (X0 = X (Apy, +divS™NX)  ,xeZtNQ

(8(Py 4, =P i) /M) (X) = =y (Bpy, /00 + ™)) xeZgN0Q
where X and p are suitable parameters and the operator G/@nlDF is defined as follows : for
any polynomial ry in Py (Q), we set for each point x of Eﬁ N aq,

1) if x is not a corner, assuming for instance that x =x,, = (cé‘, cf) belongsto I},
IR o B (A )
Lo - T
2) if x isacorner, assuming for instance that x is equal to a, = (Cé‘, CQ),
ZZ (A 0 T C AN o) I W € SARE )

2(%q - C7)
the operator a/anIDF is defined similarly on the three other edges ', , 'y, and Iy, of the

(Bry/0mge) (xg,) =

(OrN/c’)nlDF)(a,) =

’

square.

The parameters X\ and y are chosen experimentally, in order to ensure the
convergence of the sequence ( PNk )k;0 . In our computation, they are respectively equal to
0.01 and 0.75.

The finite difference preconditioning method is well-known for spectral computations.
It allows one to avoid direct inversion of sbectral operators (e.q. the operator A in our
case), which is expensive because the corresponding matrices are full (see [02], for
instance).

Finally, let us remark that we did not Jook for the pressure in the space My as is

suggested in the theory of § [{1.3. This approach is now under consideration.

Y.4. Numerical results,

The numerical experiments were performed in domains of R> with curved geometries,
in which we generalized the previous algorithm. Indeed, we can use spectral techniques in a
curved connected open set ) < [R3, if there exists a one-to-one function &F which is
sufficiently smooth and maps the reference cube Q = ]-1,1 [3 onto Q. Thanks to the function
F.a problem initially set in Q) is brought back to the cube Q.

The set of spurious modes for pressure can be identified for three-dimensional
problems [BMM, Lemme V.1][BCM, Remark 1V.3}, and we can obtain a well-posed problem

for the Navier-Stokes equations in a cube as has been done in the two-dimensional case.
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Moreover, we refer to [Mé, Chap. 2 and 3] for details about discretization of Navier-Stokes

equations in curved geometries.

Let x = (X, , X, , X3) and x = (x, , X, , X3) denote the generic points of O and Q,
respectively. In our numerical applications, we have considered the set 0 to be defined as a
curved hexahedron of [R3, two opposite sides of which are plane and parallel. Without
restriction, we assume that these two sides are parallel to the plane >~<2 = 0. The nozzle Q) is
then defined from its boundary : let fi:7\ = [-1,1]> > R®, 1 <i<4, be the

parametrizations of the four other sides (see FigureV.1).

FiqureVy.1

The function & can be defined as follows : for x = (x, , X, , X3), we set
F(x) = ((14x9)72) £3(x; %) + ((1-%3)72) £1(X, 1 %,)
+ ((1ex,)72) [£alxy o xg) = ((14x3)72) fu(xy , +1) = ((1=%3)/2) £ulx, , - 1)]
+ ((1=x)72) [£p(%, 1 x3) = ((14%3)72) P(xy , +1) = ((1=%3)/2) $,(x, , - 1)]
Clearly, we have & (3Q) = 80). Moreover, we assume that the function & is one-to-one

and that F(Q) = Q. This last property can be deduced from hypotheses of smoothness
concerning the function & (see [Mé, Chap. 3, Th. V.1]).

in the example below, the open set Q) is a nozzle, the cross section of which in any

plane x, = constant is a rectangle. The function F issimply defined by
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Xy =& X, +B
Fx) = | %, =x,
X3 = X3 $x;)
where f is a fourth-degree polynomial with maxima at x, = 1 and a minimum at a point
Xy = x? of ]-1,1[. The boundary conditions g are given by
3(1-x3) 7 4 f(x,)

goF(x)= |0 yXg= 21,
0

3(1-x3) /4 f(x))

) yXpg =21,
3(1-x3) x3 §'(x)) 7 4 flx)
0
0 y X = 1
o 3
Note that we can extend the boundary data g into a divergence-free function u, on Q, by
setting
3(1-x2) 74 §(x,)
Ub [ g:(X) = f 1

3(1-x3) x3 §(x,) 7 4o fUx,)
The viscosity coefficient v is equal to 1072, The discretization is performed in the space of

polynomials of degree < N, with N = 16. Thus the mesh is made up of 17° collocation nodes

associated with the Chebyshev polynomials. T<he time step 6t is equal to 1073,

Figure Y.2 shows the mesh. In Figure V.3, the velocity iso-norms and the
iso-pressure lines are presented in the plane x, = 0, at the time 10 &t (when the stationary
state is already reached).

Figure Y.4 shows the iso-pseudo-pressure lines. The spurious mode TN(x,) (the
extrema of which coincide with the vertical lines of the mesh) appears clearly and totally
hides the pressure behavior.

Figure Y.S shows the convergence of the algorithm (Y.13) for the pressure
post-treatment. Due to Neumann boundary conditions, the convergence is rather slow, so
that the technique must be improved in order to obtain an efficient pressure solver.

Nevertheless, we obtain good results concerning the velocity. Note that we have

((divug) o F, (divul) o F)(E=6.4. 107
This quantity can of course be reduced by increasing the number of collocation points. We

refer to [Mé, Chap. 4, § 1V.3] for another way to reduce ((div u}*') o &, (div UE”)°§)C,N .
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